Как работает триде принтер


3D-принтер: что это и как он работает? | GeekBrains

Описание возможностей 3д принтера и история его появления.

https://d2xzmw6cctk25h.cloudfront.net/post/1999/og_image/501bb6c82a53bb3bc2a0fee73b0c9e9e.png

В 2011 году принтер, который заправили биогелем, напечатал человеческую почку прямо во время конференции TED. Два года назад Adidas анонсировала новую модель кроссовок, которые печатают на 3D-принтере за 20 минут. А недавно компания Илона Маска SpaceX успешно провела испытания двигателей космического корабля, которые тоже напечатали на 3D-принтере.

В современном мире 3D-печать — это не удивительная технология будущего, а хорошо изученная реальность. Ее применяют в архитектуре, строительстве, медицине, дизайне, производстве одежды и обуви и других сферах. По запросу «3D-принтер» поисковики выдают сотни чертежей и прототипов разной сложности — от мыльницы и настольной лампы до автомобильного двигателя и даже жилого дома. 

Любой может купить принтер и напечатать чехол для смартфона, но дальше 3д печати по чертежу идут не все. В этой статье расскажем, когда появилась 3D-печать, как можно применять технологию и какие у нее перспективы.

Как появился трехмерный принтер

Не будем слишком утомлять вас датами и кратко перескажем историю 3D-печати.

Предвестник трехмерной печати. В начале 80-х доктор Хидео Кодама разработал систему быстрого прототипирования с помощью фотополимера — жидкого вещества на основе акрила. Технология печати была похожа на современную: принтер печатал объект по модели, послойно. 

Первый 3D-принтинг. Изготовление физических предметов с помощью цифровых данных продемонстрировал Чарльз Халл. В 1984 году, когда компьютеры еще не сильно отличались от калькуляторов, а до выхода Windows-95 было десять лет, он изобрел стереолитографию - предшественницу 3D-печати. Работала технология так: под воздействием ультрафиолетового лазера материал застывал и превращался в пластиковое изделие. Форму печатали по цифровым объектам, и это стало бумом среди разработчиков — теперь можно было создавать прототипы с меньшими издержками. 

Первый 3D-принтер. Источник: habr

Первый производитель 3D-принтеров. Через два года Чарльз Халл запатентовал технологию и открыл компанию по производству принтеров 3D Systems. Она выпустила первый аппарат для промышленной 3D-печати и до сих пор лидирует на рынке. Правда, тогда принтер называли иначе — аппаратом для стереолитографии.

Популярность 3D-печати и новые технологии. В конце 80-х 3D Systems запустила серийное производство стереолитографических принтеров. Но к тому времени появились и другие технологии печати: лазерное спекание и моделирование методом наплавления. В первом случае лазером обрабатывался порошок, а не жидкость. А по методу наплавления работает большинство современных 3D-принтеров. Термин «3D-печать» вошел в обиход, появились первые домашние принтеры.

Революция в 3D-печати. В начале нулевых рынок раскололся на два направления: дорогие сложные системы и те, что доступны каждому для печати дома. Технологию начали применять в специфических областях: впервые на 3D-принтере напечатали мочевой пузырь, который успешно имплантировали.

Печать тестового образца почки. Источник: BBC

В 2005 году появился первый цветной 3D-принтер с высоким качеством печати, который создавал комплекты деталей для себя и «коллег».

Как устроен 3D-принтер

В основном принтеры трехмерной печати состоят из одинаковых деталей и по устройству похожи на обычные принтеры. Главное отличие — очевидное: 3D-принтер печатает в трех плоскостях, и кроме ширины и высоты появляется глубина. 

Вот из каких деталей состоит 3D-принтер, не считая корпуса:

  • экструдер, или печатающая головка — разогревает поверхность, с помощью системы захвата отмеряет точное количество материала и выдавливает полужидкий пластик, который подается в виде нитей; 
  • рабочий стол (его еще называют рабочей платформой или поверхностью для печати) — на нем принтер формирует детали и выращивает изделия;
  • линейный и шаговый двигатели — приводят в движение детали, отвечают за точность и скорость печати;
  • фиксаторы — датчики, которые определяют координаты печати и ограничивают подвижные детали. Нужны, чтобы принтер не выходил за пределы рабочего стола, и делают печать более аккуратной;
  • рама — соединяет все элементы принтера.

Схема 3D-принтера. Источник: Lostprinters

Все это управляется компьютером.

Как создают изделия

За создание трехмерного изделия отвечает аддитивный процесс 3д-печати — это когда при изготовлении предмета слои материала накладываются друг на друга, снизу вверх, пока не получится копия формы в чертеже. Так печатают изделия из пластика. А фотополимерная печать работает по технологии стереолитографии (SLA): под воздействием лазерного излучателя фотополимеры затвердевают. Кроме пластика и фотополимерных смол, современные 3D-принтеры работают с металлоглиной и металлическим порошком. 

Печать состоит из непрерывных циклов, которые повторяются один за другим — на один слой материала наносится следующий, и печатающая головка двигается, пока на рабочей поверхности не окажется готовый предмет. Отходы печати принтер сам удаляет с рабочего стола.

Как работает 3D-чертеж

Принтер печатает изделие по 3D-чертежу: его создают на компьютере в специальной программе, затем сохраняют в формате STL. Этот файл выводят в программу резки для принтера — она помогает задать модели физические свойства изделия, например плотность. Далее программа преобразует модель в инструкцию для экструдера и выгружает ее на принтер, который начинает печатать изделие.

3D-чертеж легко сделать в домашних условиях — почитайте инструкцию на habr. 

Как запрограммировать 3D-принтер

Краткая инструкция по настройке принтера:

  1. Выбрать 3D-модель. Изделие можно нарисовать самому в специальном CAD-редакторе или найти готовый чертеж — в интернете полно моделей разной сложности.
  2. Подготовить 3D-модель к печати. Это делают методом слайсинга (slice — часть). К примеру, чтобы распечатать игрушку, ее модель нужно с помощью программ-слайсеров «разбить» на слои и передать их на принтер. Проще говоря, слайсер показывает принтеру, как печатать предмет: по какому контуру двигаться печатной головке, с какой скоростью, какую толщину слоев делать. 
  3. Передать модель принтеру. Из слайсера 3D-чертеж сохраняется в файл под названием G-code. Компьютер загружает файл в принтер и запускает 3д-печать.
  4. Наблюдать за печатью.

Можно ли применять напечатанные изделия

Зависит от качества материала, принтера и конечного изделия. Часто домашние принтеры неточно передают форму и цвет предмета. Изделия из пластика нужно дополнительно обработать: иногда они печатаются с заусенцами и дефектами и почти всегда с ребристой поверхностью. 

Изделие после и до обработки. Источник: 3D-Today

Для обработки поверхности есть несколько способов — не все подходят для домашнего применения:

  • механическая обработка — шлифовка вручную, срезание заусенцев;
  • химическая — погружение в ацетон, пескоструйная обработка, нанесение спецраствора кисточкой. 

Что можно напечатать на 3D-принтере

В интернете полно подборок с инструкциями для печати 3D-изделий. 3D-Today публикует фотографии работ владельцев принтеров, от мелких запчастей до скульптур. На «Хабре» уже три года назад постили список «50 крутых вещей для печати на 3D-принтере». Make3D написали о более масштабных проектах — печати автомобилей, оружия, солнечных батарей и протезов.

Есть ряд перспективных областей, в которых уже применяют 3D-печать.

Изготовление моделей по собственным эскизам. Константин Иванов, создатель сервиса 3DPrintus, в интервью «Афише» рассказал, что 3D-печать приведет к расцвету customizable things: любой сможет собрать и распечатать нужное изделие онлайн. Например, сделать модель робота и заказать его печать на промышленном принтере, создать и распечатать свой дизайн обручальных колец или обуви. Примеры таких проектов — Thinker Thing и Jweel. 

Быстрое прототипирование. Самая популярная область, в которой используют трехмерную печать. На 3D-принтерах делают тестовые модели протезов, прототипы лечебных корсетов, барельефов, олимпийского снаряжения.

Прототипы детских протезов, 3D-печать. Источник: 3D-Pulse

Сложная геометрия. 3D-принтер легко справляется с изготовлением моделей любой формы. Несколько примеров:

— в австралийском университете исследовали возможности 3D-принтера и напечатали табурет в форме отпечатка пальца;

— шеф-повар из Дании победил в конкурсе высокой кухни: он напечатал на 3D-принтере миниатюрные блюда сложной формы из морепродуктов и свекольного пюре;

Одно из победивших блюд шеф-повара. Источник: 3D-Pulse

— в немецком институте разработали систему для ускоренной 3D-печати — за 18 минут принтер изготавливает сложное геометрическое изделие высотой в 30 см. Обычно у принтеров уходит час на печать карманных фигурок.

Технологии 3D-печати 

Кратко об основных методах 3D-принтинга.

Стереолитография (SLA). В стереолитографическом принтере лазер облучает фотополимеры, и формирует каждый слой по 3D-чертежу. После облучения материал затвердевает. Прочность изделия зависит от типа полимера — термопластика, смол, резины. 

Цветную печать стереолитография не поддерживает. Из других недостатков — медленная работа, огромный размер стереолитографических установок, а еще нельзя сочетать несколько материалов в одном цикле.

Эта технология — одна из самых дорогих, но гарантирует точность печати. Принтер наносит слои толщиной 15 микрон — это в несколько раз тоньше человеческого волоса. Поэтому с помощью стереолитографии делают стоматологические протезы и украшения. 

Промышленные стереолитографические установки могут печатать огромные изделия, в несколько метров. Поэтому их успешно применяют в производстве самолетов, судов, в оборонной промышленности, медицине и машиностроении. 

Селективное лазерное спекание (SLS). Самый распространенный метод спекания порошковых материалов. Другие технологии — прямое лазерное спекание и выборочная лазерная плавка.

Метод изобрел Карл Декарт в конце восьмидесятых: его принтер печатал методом послойного вычерчивания (спекания). Мощный лазер нагревает небольшие частицы материала и двигается по контурам 3D-чертежа, пока изделие не будет готово. Технологию используют для изготовления не цельных изделий, а деталей. После спекания детали помещают в печь, где материал выгорает. SLS использует пластик, керамику, металл, полимеры, стекловолокно в виде порошка.

На атлете — кроссовки New Balance, которые изготовили с помощью лазерного спекания. Источник: 3D-Today

Технологию SLS используют для прототипов и сложных геометрических деталей. Для печати в домашних условиях SLS не подходит из-за огромных размеров принтера.

Послойная заливка полимера (FDM), или моделирование методом послойного наплавления. Этот способ 3d-печати изобретен американцем Скоттом Крампом. Работает FDM так: материал выводится в экструдер в виде нити, там он нагревается и подается на рабочий стол микрокаплями. Экструдер перемещается по рабочей поверхности в соответствии с 3D-моделью, материал охлаждается и застывает в изделие. 

Преимущества — высокая гибкость изделий и устойчивость к температурам. Для такой печати используют разные виды термопластика. FDM — самая недорогая среди 3D-технологий печати, поэтому принтеры популярны в домашнем использовании: для изготовления игрушек, сувениров, украшений. Но в основном моделирование послойным наплавлением используют в прототипировании и промышленном производстве — принтеры довольно быстро печатают мелкосерийные партии изделий. Предметы из огнеупорных пластиков изготовляют для космической отрасли. 

Струйная 3D-печать. Один из первых методов трехмерной печати — в 1993 году его изобрели американские студенты, когда усовершенствовали обычный бумажный принтер, и вскоре технологию приобрела та самая компания 3D Systems. 

Работает струйная печать так: на тонкий слой материала наносится связующее вещество по контурам чертежа. Печатная головка наносит материал по границам модели, и частицы каждого нового слоя склеиваются между собой. Этот цикл повторяется, пока изделие не будет готово. Это один из видов порошковой печати: раньше струйные 3D-принтеры печатали на гипсе, сейчас используют пластики, песчаные смеси и металлические порошки. Чтобы сделать изделие крепче, после печати его могут пропитывать воском или обжигать.

Предметы, которые напечатали по этой технологии, обычно долговечные, но не очень прочные. Поэтому с помощью струйной печати делают сувениры, украшения или прототипы. Такой принтер можно использовать дома. 

Эти конфеты сделали на кондитерском струйном 3D-принтере ChefJet: вместо пластика он использует воду, сахар, шоколад и пищевые красители. Источник: 3Dcream.ru

Еще струйную технологию используют в биопечати — наносят живые клетки друг на друга послойно и таким образом строят органические ткани. 

Где применяют 3D-печать

В основном в профессиональных сферах.

Строительство. На 3D-принтерах печатают стены из специальной цементной смеси и даже дома в несколько этажей. Например, Андрей Руденко еще в 2014 году напечатал на строительном принтере замок 3 × 5 метров. Такие 3D-принтеры могут построить двухэтажный дом за 20 часов.

Медицина. О печати органов мы уже упоминали, а еще 3D-принтеры активно используют в протезировании и стоматологии. Впечатляющие примеры — с помощью 3D-печати врачам удалось разделить сиамских близнецов, а кошке без четырех лап поставили протезы, которые напечатали на принтере. 

Подробнее о 3D-принтинге в медицине можно узнать в статье издания 3D-Pulse.

Космос. С помощью трехмерной печати делают оборудование для ракет, космических станций. Еще технологию используют в космической биопечати и даже в работе луноходов. Например, российская компания 3D Bioprinting Solutions отправит в космос живые бактерии и клетки, которые вырастят на 3D-принтере. Создатель Amazon Джефф Безос презентовал прототип лунного модуля с напечатанным двигателем, а космический стартап Relativity Space строит фабрику 3D-печати ракет. 

Авиация. 3D-детали печатают не только для космических аппаратов, но и для самолетов. Инженеры из лаборатории ВВС США изготавливают на 3D-принтере авиакомпоненты — например, элемент обшивки фюзеляжа — примерно за пять часов.

Архитектура и промышленный дизайн. На трехмерных принтерах печатают макеты домов, микрорайонов и поселков, включая инфраструктуру: дороги, деревья, магазины, освещение, транспорт. В качестве материала обычно используют недорогой гипсовый композит. 

Одно из необычных решений — дизайн бетонных баррикад от американского дизайнера Джо Дюсе. После терактов с грузовыми автомобилями, которые врезались в толпу людей, он предложил макет прочных и функциональных заграждений в виде конструктора, которые можно напечатать на 3D-принтере.

Изготовить прототип помогла компания UrbaStyle, которая печатает бетонные формы на строительных 3D-принтерах

Образование. С помощью 3D-печати производят наглядные пособия для детских садов, школ и вузов. В некоторых московских школах с 2016 года есть трехмерные принтеры: на уроках химии дети разглядывают 3D-модели молекул и проводят реакции в напечатанных пробирках, на физике изучают электрическую цепь на 3D-прототипе токопроводящего стенда, а еще сами печатают себе ручки на уроках ИЗО.

Узнать больше о 3D-технологиях в школах можно на сайте «Ассоциации 3D-образования». 

А еще 3D-печать помогает в быту, производстве одежды, украшений, картографии, изготовлении игрушек и дизайне упаковок.

Насколько точно работает 3D-печать?

3D-печать - это универсальный метод производства и быстрого прототипирования. За последние несколько десятилетий он произвел фурор во многих отраслях по всему миру.

3D-печать является частью семейства производственных технологий, называемых аддитивным производством. Это описывает создание объекта путем добавления материала к объекту слой за слоем. На протяжении всей своей истории аддитивное производство носило различные названия, включая стереолитографию, трехмерное наслоение и трехмерную печать, но наиболее известной является трехмерная печать.

Так как же работают 3D-принтеры?

СВЯЗАННЫЕ С: НАЧНИТЕ СОБСТВЕННЫЙ БИЗНЕС ПО 3D-ПЕЧАТИ: 11 ИНТЕРЕСНЫХ КЕЙСОВ КОМПАНИЙ, ИСПОЛЬЗУЮЩИХ 3D-ПЕЧАТЬ

Как работает 3D-принтер?

Процесс 3D-печати начинается с создания графической модели печатаемого объекта. Обычно они разрабатываются с использованием пакетов программного обеспечения для автоматизированного проектирования (САПР), и это может быть наиболее трудоемкой частью процесса. Для этого используются программы TinkerCAD, Fusion360 и Sketchup.

Для сложных продуктов эти модели часто тщательно тестируются в имитационном моделировании на предмет потенциальных дефектов в конечном продукте. Конечно, если объект для печати носит чисто декоративный характер, это менее важно.

Одним из основных преимуществ 3D-печати является то, что она позволяет быстро создавать прототипы практически всего. Единственное реальное ограничение - это ваше воображение.

На самом деле, есть объекты, которые просто слишком сложны для создания в более традиционных процессах производства или прототипирования, таких как фрезерование или формование с ЧПУ.Это также намного дешевле, чем многие другие традиционные методы производства.

После проектирования следующим этапом является цифровая нарезка модели для ее печати. Это жизненно важный шаг, поскольку 3D-принтер не может концептуализировать 3D-модель так же, как вы или я. Процесс нарезки разбивает модель на множество слоев. Затем дизайн каждого слоя отправляется в печатающую головку для печати или укладки по порядку.

Процесс нарезки обычно завершается с помощью специальной программы для резки, такой как CraftWare или Astroprint.Это программное обеспечение для срезов также будет обрабатывать "заливку" модели, создавая решетчатую структуру внутри твердотельной модели для дополнительной устойчивости, если это необходимо.

Это также область, в которой 3D-принтеры преуспевают. Они могут печатать очень прочные материалы с очень низкой плотностью за счет стратегического добавления воздушных карманов внутри конечного продукта.

Программное обеспечение слайсера также добавит столбцы поддержки, где это необходимо. Это необходимо, потому что пластик нельзя уложить в воздухе, а колонны помогают принтеру заполнять промежутки.Затем эти столбцы при необходимости удаляются.

После того, как программа слайсера сработала, данные отправляются на принтер для заключительного этапа.

Источник: Интересный машиностроительный цех

Отсюда сам 3D-принтер берет верх. Он начнет распечатывать модель в соответствии с конкретными инструкциями программы слайсера, используя разные методы, в зависимости от типа используемого принтера. Например, прямая 3D-печать использует технологию, аналогичную технологии струйной печати, в которой сопла перемещаются вперед и назад, вверх и вниз, распределяя густой воск или пластмассовые полимеры, которые затвердевают, образуя каждое новое поперечное сечение 3D-объекта.В многоструйном моделировании используются десятки работающих одновременно струй для более быстрого моделирования.

При трехмерной печати связующим сопла для струйной печати наносят тонкий сухой порошок и жидкий клей или связующее, которые вместе образуют каждый напечатанный слой. Принтеры для переплета делают два прохода для формирования каждого слоя. Первый проход наносит тонкий слой порошка, а второй проход использует сопла для нанесения связующего.

При фотополимеризации капли жидкого пластика подвергаются воздействию лазерного луча ультрафиолетового света, который превращает жидкость в твердое тело.

Спекание - еще одна технология 3D-печати, которая включает плавление и сплавление частиц вместе для печати каждого последующего слоя. Связанное с этим селективное лазерное спекание основывается на использовании лазера для плавления огнестойкого пластикового порошка, который затем затвердевает, образуя печатный слой. Спекание также можно использовать для изготовления металлических предметов.

Процесс 3D может занять часы или даже дни, в зависимости от размера и сложности проекта.

«Есть несколько более быстрых технологий, производящих всплески в отрасли, например, Carbon M1, в котором используются лазеры, выстреливаемые в слой жидкости и вытягивающие отпечаток из него, что значительно ускоряет процесс.Но эти типы принтеров во много раз сложнее, намного дороже и пока работают только с пластиком ». - howtogeek.com.

Независимо от того, какой тип 3D-принтера используется, общий процесс печати обычно одинаков.

  • Шаг 1: Создание 3D-модели с помощью программного обеспечения CAD.
  • Шаг 2: Чертеж CAD преобразуется в формат стандартного языка тесселяции (STL). Большинство 3D-принтеров используют файлы STL в дополнение к другим типам файлов такие как ZPR и ObjDF.
  • Шаг 3: Файл STL передается на компьютер, который управляет 3D-принтером. Там пользователь указывает размер и ориентацию для печати.
  • Шаг 4: Сам 3D-принтер настроен. У каждой машины свои требования к настройке, такие как заправка полимеров, связующих и других расходных материалов, которые будет использовать принтер.
  • Шаг 5: Запустите машину и дождитесь завершения сборки. В течение этого времени машину следует регулярно проверять, чтобы убедиться в отсутствии ошибок.
  • Шаг 6: Напечатанный объект удален из аппарата.
  • Шаг 7: Последний шаг - пост-обработка. Многие 3D-принтеры требуют некоторой постобработки, такой как удаление остатков порошка щеткой или промывка печатного объекта для удаления водорастворимых подложек. Новый объект также может нуждаться в лечении.

Что умеет делать 3D-принтер?

Как мы уже видели, 3D-принтеры невероятно универсальны.Теоретически они могут создать практически все, о чем вы можете подумать.

Но они ограничены видами материалов, которые они могут использовать для «чернил», и их размером. Для очень больших объектов, например дома, вам нужно будет распечатать отдельные части или использовать очень большой 3D-принтер .

3D-принтеры могут печатать в пластике, бетоне, металле и даже клетках животных. Но большинство принтеров предназначены для использования только одного типа материала.

Некоторые интересные примеры объектов, напечатанных на 3D-принтере, включают, но не ограничиваются: -

  • Протезы конечностей и других частей тела
  • Дома и другие здания
  • Продукты питания
  • Медицина
  • Огнестрельное оружие
  • Жидкие структуры
  • Стекло продукты
  • Акриловые предметы
  • Реквизит для фильмов
  • Музыкальные инструменты
  • Одежда
  • Медицинские модели и устройства

3D-печать явно находит применение во многих отраслях.

Какие существуют типы программного обеспечения для 3D-печати?

В разных программах САПР используются различные форматы файлов, но некоторые из наиболее распространенных:

  • STL - стандартный язык тесселяции, или STL - это формат 3D-рендеринга, который обычно может обрабатывать только один цвет. Обычно это формат файла, который используют большинство настольных 3D-принтеров.
  • VRML - язык моделирования виртуальной реальности, файл VRML - это новый формат файла.Они обычно используются для принтеров с более чем одним экструдером и позволяют создавать многоцветные модели.
  • AMF - формат файла аддитивного производства, это открытый стандарт на основе .xml для 3D-печати. Он также может поддерживать несколько цветов.
  • GCode - GCode - это еще один формат файла, который может содержать подробные инструкции для 3D-принтера, которым он должен следовать при укладке каждого среза.
  • Другие форматы - Другие производители 3D-принтеров также имеют свои собственные форматы файлов.

Каковы преимущества 3D-печати?

Как мы уже упоминали выше, 3D-печать может иметь различные преимущества по сравнению с более традиционными производственными процессами, такими как литье под давлением или фрезерование с ЧПУ.

3D-печать - это аддитивный процесс, а не вычитающий, как фрезерование с ЧПУ. 3D-печать строит вещи слой за слоем, в то время как позже постепенно удаляет материал из твердого блока, чтобы создать продукт. Это означает, что в некоторых случаях 3D-печать может быть более ресурсоэффективной, чем ЧПУ.

Другой пример традиционных производственных процессов, литье под давлением, отлично подходит для изготовления множества объектов в больших объемах. Хотя его можно использовать для создания прототипов, литье под давлением лучше всего подходит для крупномасштабного массового производства утвержденного дизайна продукта. Однако 3D-печать лучше подходит для мелкосерийного, ограниченного производства или создания прототипов.

В зависимости от области применения 3D-печать имеет ряд других преимуществ перед другими производственными процессами. К ним относятся, но не ограничиваются:

  • Более быстрое производство - Хотя временами 3D-печать медленна, она может быть быстрее, чем некоторые традиционные процессы, такие как литье под давлением и субтрактивное производство.
  • Легкодоступный - 3D-печать существует уже несколько десятилетий и резко выросла примерно с 2010 года. Сейчас доступно большое количество разнообразных принтеров и пакетов программного обеспечения (многие из них с открытым исходным кодом), что позволяет практически любому узнать, как это сделать.
Источник: Pixabay
  • Продукция более высокого качества - 3D-печать обеспечивает неизменно высокое качество продукции. Если модель точна и соответствует своему назначению, и используется один и тот же тип принтера, конечный продукт, как правило, всегда будет одинакового качества.
  • Отлично подходит для проектирования и тестирования продукции. - 3D-печать - один из лучших инструментов для проектирования и тестирования продукции. Он предлагает возможности для проектирования и тестирования моделей, позволяющих легко дорабатывать их.
  • Рентабельность - 3D-печать, как мы видели, может быть рентабельным средством производства. После создания модели процесс обычно автоматизируется, а отходы сырья обычно ограничиваются.
  • Дизайн изделий почти бесконечен - Возможности 3D-печати практически безграничны.Пока он может быть разработан в САПР, а принтер достаточно большой, чтобы его напечатать, нет предела.
  • 3D-принтеры могут печатать с использованием различных материалов. - Некоторые 3D-принтеры действительно могут смешивать материалы или переключаться между ними. В традиционной печати это может быть сложно и дорого.
.

Как работает 3D-принтер?

Думаете, 3D-печать приносит пользу только инженерам и крупным корпорациям? Подумай еще раз.

Трехмерная печать, также называемая аддитивным производством, еще не стала распространенной технологией в быту. Однако благодаря постоянным инновациям в этой области 3D-печать революционизирует традиционные отрасли печати и производства.

Важно сначала понять, что такое 3D-печать, как работают эти принтеры и как 3D-принтер может быть интересным дополнением к вашему дому или бизнесу.

Что такое 3D-печать и как работает 3D-принтер?

По своей сути 3D-печать - это создание трехмерного твердого объекта, напечатанного последовательными тонкими слоями материала в соответствии с указаниями создаваемого вами цифрового файла. Первоначально эта технология принесла наибольшую пользу создателям инженерных прототипов, но недавние достижения расширили возможности 3D-печати в различных отраслях и даже увеличили использование 3D-принтеров в домашних условиях.

Как работают 3D-принтеры

Объекты, напечатанные на 3D-принтере, начинаются с цифрового чертежа, созданного с помощью программного обеспечения для автоматизированного проектирования (САПР).Отсюда единственные ограничения для создателей - доступ к сырью для процесса печати и их собственное воображение.

Имея готовый чертеж, создатели 3D-печати просто:

  • Соберите сырье
  • Заполните принтер материалами
  • Подготовьте платформу 3D-сборки
  • Позвольте 3D-принтеру творить чудеса

Физический объект - это напечатанный слой по слою в соответствии с чертежом программного обеспечения для автоматизированного проектирования (САПР), пока он не будет завершен.В 3D-принтерах могут использоваться различные технологии или методы, но вот четыре наиболее распространенных процесса 3D-печати:

  • Polyjet
  • Стереолитография (SLA)
  • Цифровая лазерная проекция (DLP)
  • Моделирование осаждения волокон (FDM), также известное как производство плавленых волокон

Каждая конкретная технология 3D-печати имеет свои недостатки и преимущества, включая стоимость, возможности и тип используемых материалов. Обширные исследования и полное понимание ваших намерений являются ключом к выбору наилучшего решения для вашего дома, бизнеса или организации.

Что используют 3D-принтеры для печати материалов?

В то время как материалами для 3D-печати обычно были металлы и пластмассы, недавние инновации расширили типы используемых материалов. Это заставляет ответить на вопрос: «Из чего сделана 3D-печать?» сложно, поскольку это может быть практически любой материал, который только можно вообразить.

Помимо материалов, которые могут использовать 3D-принтеры, очень важно, чтобы эти принтеры использовали их эффективно при извлечении и утилизации любого неиспользованного материала.

В результате 3D-печать стала модернизировать множество отраслей в сфере традиционного производства и за ее пределами.

Рассмотрим следующие варианты использования 3D-печати в различных отраслях:

  • Настройка и печать автозапчастей
  • Отливка из бетона для архитектурных и инженерных проектов
  • Сборка манекенов для моделирования столкновений для лучшего моделирования столкновений, особенно для пожилых пассажиров
  • Использование изомальтового сахара в качестве основы для создания сложных биологических структур для роста клеток и тканей человека

Список можно продолжить, но ваш следующий вопрос может заключаться в том, что делает 3D-принтер для начинающего энтузиаста дома или предпринимателя? Много.

Как использовать 3D-принтер у себя дома

Хотя эти принтеры могут быть еще не в каждом доме, они все же предлагают возможность распечатать большое количество обычных предметов, которые вы обычно покупаете или собираете самостоятельно. Когда вы можете настроить дизайн своих чертежей и распечатать эти предметы дома, 3D-принтеры предлагают несколько преимуществ:

  • Воплощайте художественные проекты в жизнь
  • Создавайте уникальные подарки для семьи и друзей
  • Сокращайте домашние расходы на предметы повседневного обихода
  • Печать запасные части для ремонта мебели и техники
  • Изготовление прототипов предметов для вашего бизнеса или хобби

Резюме

3D-печать требует предварительных вложений в принтер и сырье, что может сделать ее недоступной для многих начинающих производителей.Но благодаря стратегическому планированию и внедрению 3D-печать может предоставить множество новых возможностей для творчества и полезности в вашем доме и на работе.

В HP® есть специальные решения для бизнес-печати, такие как HP Jet Fusion 500/300 Series, которые отражают этот образ мышления, позволяя повысить скорость проектирования и производственных циклов, повысить рентабельность и экологичность. .

Как работают 3D-принтеры | Министерство энергетики

На этой неделе мы празднуем запуск новой серии на Energy.gov: Как работает энергия.

Три года назад печать трехмерных объектов дома могла бы звучать как вещь из The Jetsons . Но всего за несколько коротких лет 3D-печать резко выросла, превратившись из нишевой технологии в революционную инновацию, которая захватывает воображение как крупных производителей, так и любителей.

3D-печать может произвести революцию в производстве, позволяя компаниям (и частным лицам) разрабатывать и производить продукты по-новому, а также сокращать отходы материалов, экономить энергию и сокращать время, необходимое для вывода продуктов на рынок.

Что такое 3D-печать?

Технология 3D-печати, впервые изобретенная в 1980-х годах инженером и физиком Чаком Халлом, прошла долгий путь. 3D-печать, также называемая аддитивным производством, - это процесс создания объекта путем нанесения материала по одному крошечному слою за раз.

Основная идея аддитивного производства может быть найдена в горных образованиях глубоко под землей (капающая вода откладывает тонкие слои минералов, формируя сталактиты и сталагмиты), но более современным примером является обычный настольный принтер. Подобно тому, как струйный принтер добавляет отдельные точки чернил для формирования изображения, 3D-принтер добавляет материал только там, где это необходимо, на основе цифрового файла.

Для сравнения, многие традиционные производственные процессы, которые недавно были названы «субтрактивным производством», требуют вырезания лишних материалов для изготовления желаемой детали.Результат: согласно данным Национальной лаборатории Окриджа Министерства энергетики США, субтрактивное производство может тратить до 30 фунтов материала на каждый фунт полезного материала в некоторых частях.

В некоторых процессах 3D-печати около 98 процентов сырья используется для изготовления готовой детали. Не говоря уже о том, что 3D-печать позволяет производителям создавать новые формы и более легкие детали, которые используют меньше сырья и требуют меньшего количества этапов производства. В свою очередь, это может привести к снижению энергопотребления для 3D-печати - до 50 процентов меньше энергии для определенных процессов по сравнению с обычными производственными процессами.

Хотя возможности аддитивного производства безграничны, сегодня 3D-печать в основном используется для создания небольших, относительно дорогих компонентов с использованием пластмасс и металлических порошков. Тем не менее, поскольку цена настольных 3D-принтеров продолжает падать, некоторые новаторы экспериментируют с различными материалами, такими как шоколад и другие продукты питания, воск, керамика и биоматериалы, похожие на человеческие клетки.

Как работает 3D-принтер?

Технологии аддитивного производства бывают разных форм и размеров, но независимо от типа 3D-принтера или материала, который вы используете, процесс 3D-печати следует одним и тем же основным этапам.

Он начинается с создания трехмерного чертежа с использованием программного обеспечения для автоматизированного проектирования (обычно называемого САПР). Создатели ограничены только своим воображением. Например, 3D-принтеры используются для производства всего: от роботов и протезов до обуви и музыкальных инструментов на заказ. Национальная лаборатория Ок-Ридж даже сотрудничает с компанией, чтобы создать первый автомобиль, напечатанный на 3D-принтере с использованием крупномасштабного 3D-принтера, а America Makes - президентский экспериментальный институт производственных инноваций, специализирующийся на 3D-печати - недавно объявил, что предоставляет финансирование для новый недорогой 3D-принтер по металлу.

После создания 3D-чертежа принтер необходимо подготовить. Сюда входит повторное заполнение сырья (например, пластмассы, металлические порошки или связующие растворы) и подготовка платформы для сборки (в некоторых случаях вам может потребоваться очистить ее или нанести клей, чтобы предотвратить движение и деформацию от тепла во время процесса печати) .

После того, как вы нажмете кнопку «Печать», машина автоматически построит желаемый объект. Хотя процессы печати различаются в зависимости от типа технологии 3D-печати, экструзия материала (которая включает в себя ряд различных типов процессов, таких как моделирование методом наплавления) является наиболее распространенным процессом, используемым в настольных 3D-принтерах.

Экструзия материала работает как клеевой пистолет. Печатный материал - обычно пластиковая нить - нагревается до жидкого состояния и выдавливается через сопло для печати. Используя информацию из цифрового файла - дизайн разделен на тонкие двухмерные поперечные сечения, чтобы принтер точно знал, куда положить материал - сопло наносит полимер тонкими слоями, часто толщиной 0,1 миллиметра. Полимер быстро затвердевает, связываясь с нижележащим слоем, прежде чем платформа сборки опустится и печатающая головка добавит еще один слой.В зависимости от размера и сложности объекта весь процесс может занять от нескольких минут до нескольких дней.

После завершения печати каждый объект требует небольшой постобработки. Это может варьироваться от отклеивания объекта от платформы сборки до удаления поддерживающих структур (временный материал, напечатанный для поддержки выступов на объекте) и удаления излишков порошка.

Виды 3D-принтеров

За прошедшие годы индустрия 3D-печати резко выросла, создав новые технологии (и новый язык для описания различных процессов аддитивного производства).Чтобы упростить этот язык, ASTM International - международная организация по стандартизации - выпустила в 2012 году стандартную терминологию, в которой технологии аддитивного производства были разделены на семь широких категорий. Ниже приведены краткие сведения о различных типах 3D-печати (с экструзией материала, описанной в предыдущем разделе).

  • Распыление материала : Как и в стандартном настольном принтере, при струйном принтере материал откладывается через головку струйного принтера. В процессе обычно используется пластик, который требует света для его затвердевания (так называемый фотополимер), но он также может печатать воски и другие материалы.Хотя с помощью струйной печати можно производить точные детали и включать несколько материалов за счет использования дополнительных сопел для струйных принтеров, машины относительно дороги, а время сборки может быть медленным.
  • Обработка связующего вещества : При струйной очистке связующего тонкий слой порошка (это может быть что угодно, от пластика или стекла до металла или песка) катится по платформе сборки. Затем головка принтера распыляет связующий раствор (похожий на клей), чтобы соединить порошок только в местах, указанных в цифровом файле.Процесс повторяется до тех пор, пока объект не будет готов к печати, а лишний порошок, который поддерживал объект во время сборки, удаляется и сохраняется для дальнейшего использования. Распыление связующего можно использовать для создания относительно больших деталей, но это может быть дорогостоящим, особенно для больших систем.
  • Наплавление в порошковом слое : сплавление в порошковом слое аналогично нанесению связующего, за исключением того, что слои порошка сплавлены вместе (плавятся или спекаются - процесс, в котором используется тепло или давление для образования твердой массы материала без его плавления) с использованием источник тепла, такой как лазер или электронный луч.Хотя процессы в порошковом слое позволяют производить высококачественные, прочные полимерные и твердые металлические детали, выбор сырья для этого типа аддитивного производства ограничен.
  • Направленное отложение энергии : Направленное отложение энергии может иметь множество форм, но все они следуют базовому процессу. Проволока или порошковый материал наносится тонкими слоями и плавится с использованием источника высокой энергии, такого как лазер. Системы направленного осаждения энергии обычно используются для ремонта существующих деталей и создания очень больших деталей, но с этой технологией эти детали часто требуют более обширной постобработки.
  • Ламинирование листов : Системы ламинирования листов скрепляют тонкие листы материала (обычно бумаги или металла) вместе с использованием клея, низкотемпературных источников тепла или других форм энергии для создания трехмерного объекта. Системы ламинирования листов позволяют производителям печатать с использованием материалов, чувствительных к нагреванию, таких как бумага и электроника, и предлагают самые низкие материальные затраты по сравнению с любым аддитивным процессом. Но этот процесс может быть немного менее точным, чем некоторые другие типы систем аддитивного производства.
  • Vat Photopolymerization : Фотополимеризация - самый старый тип 3D-принтеров - использует жидкую смолу, которая отверждается с помощью специального света для создания 3D-объекта. В зависимости от типа принтера, он использует лазер или проектор для запуска химической реакции и упрочнения тонких слоев смолы. Эти процессы позволяют создавать очень точные детали с мелкими деталями, но выбор материалов ограничен, а машины могут быть дорогими.
Создание страны Создателей

Хотя 3D-печать не нова, недавние достижения в этой технологии (наряду с ростом популярности таких сайтов, как Esty и Kickstarter) вызвали творческий ренессанс производства - когда любой, у кого есть доступ к принтеру, является производителем, а настройка продукта - почти без ограничений.

3D-принтеры и другие производственные технологии превращают потребителей в творцов - или производителей вещей. Это движение, часто называемое Движением Создателей, помогает стимулировать инновации и создавать совершенно новый способ ведения бизнеса. Продукты больше не нужно производить массово - их можно изготавливать небольшими партиями, печатать на месте или настраивать с учетом индивидуальных потребностей.

Этот новый образ мышления проникает и в класс через доступ к 3D-принтерам.Студенты не ограничиваются придумыванием крутых, новых идей - они могут воплотить их в жизнь, и это вдохновляет их заниматься STEM (наука, технология, инженерия и математика). Чтобы познакомить студентов с аддитивным производством и его потенциалом, Министерство энергетики, Национальная лаборатория Ок-Ридж и компания America Makes в этом году пожертвовали почти 450 3D-принтеров командам, участвующим в конкурсе FIRST Robotics.

Подъем Движения Создателей, поддерживаемый как молодыми, так и старыми, представляет огромные возможности для Соединенных Штатов.Он может создать основу для новых продуктов и процессов, которые помогут оживить американское производство. Чтобы отметить этот потенциал, президент Обама организовал в Белом доме первую ярмарку Maker Faire, которая позволила новаторам и предпринимателям всех возрастов продемонстрировать свои достижения и поделиться тем, чему они научились.

Будущее 3D-печати

Аддитивное производство не только влияет на Движение производителей, но и меняет способ ведения бизнеса компаниями и федеральными агентствами.

Компании обращаются к аддитивному производству, чтобы создавать детали, которые раньше были невозможны - примером, на который многие указывают, является использование компанией GE 3D-принтеров для создания топливных форсунок для нового реактивного двигателя, которые прочнее и легче обычных деталей - и Федеральные агентства изучают способы использования этой технологии для более эффективного выполнения своих задач.Министерство здравоохранения и социальных служб США создало биржу 3D-печати NIH, чтобы лучше делиться биомедицинскими 3D-моделями для печати среди медицинского сообщества, в то время как НАСА изучает, как 3D-печать работает в космосе.

Тем не менее, это лишь верхушка айсберга, когда речь идет о потенциале аддитивного производства. Для производителей аддитивное производство позволит создать широкий спектр новых продуктов, которые могут повысить конкурентоспособность отрасли, снизить энергопотребление в отрасли и способствовать развитию экономики экологически чистой энергии.

Министерство энергетики предоставляет компаниям доступ к технологиям 3D-печати и обучает их - от помощи в финансировании America Makes, государственно-частного партнерства, призванного сделать США лидером в области 3D-печати, до создания производственной демонстрационной лаборатории в лаборатории Oak Ridge Lab. - и будущие инженеры - о возможностях технологии. Чтобы обеспечить развитие технологий, национальные лаборатории Департамента в партнерстве с промышленностью создают новую технологию 3D-печати.Национальная лаборатория Лоуренса Ливермора недавно объявила о сотрудничестве в области разработки новых материалов, оборудования и программного обеспечения для 3D-печати, а Национальная лаборатория Ок-Ридж сотрудничает с целью разработки новой коммерческой системы аддитивного производства, которая в 200-500 раз быстрее и может печатать пластиковые компоненты в 10 раз больше, чем современные коммерческие 3D-принтеры.

По мере того, как цены падают, а технологии становятся быстрее и точнее, 3D-печать готова изменить отношение компаний и потребителей к производству - примерно так же, как первые компьютеры привели к быстрому доступу к знаниям, которые мы сейчас принимаем за предоставляется.

Чтобы узнать больше о 3D-печати Министерства энергетики, посетите веб-сайт Advanced Manufacturing Office.

.

Вы сейчас конкурируете с торговыми принтерами? 4 над прямым.

Я правда не думаю, что они пойдут прямо. Если бы я когда-нибудь узнал, что это так, это означало бы немедленный конец наших деловых отношений. У меня была ситуация, когда у клиента был доступ. Не знаю, как они представляли себя как торговый бизнес, или вообще представляли. Многие дизайнеры компании также занимаются дизайном на стороне, поэтому, если они занимаются легальным бизнесом (многие из них, включая меня), они могут зарегистрироваться сами. Это может быть случай с моим клиентом.Это было не совсем то дело. В моем случае «дизайнер» никогда не мог разработать дизайн для печати, который стоил бы денег, поэтому они вернули дерьмо и, наконец, вернулись к нам, потому что это было дешевле, чем все перепечатки.

Если у вас есть снимок экрана с клиентом, который явно не участвует в торговле, это большое дело. Я бы хотел это увидеть. Я, вероятно, пойду на день открытых дверей в Вашингтоне и хотел бы иметь при себе его распечатку, когда я буду с ними лицом к лицу.

ДОБАВИТЬ: У нас также была риэлторская компания, которая выступила в качестве маклера печати и продавала визитные карточки и многое другое своим агентам.Они использовали многие компании, в том числе 4Over, Zoo, Navitor и т. Д. Так как у них была бизнес-лицензия с правильным SIC, налоговый сертификат перепродажи, а все их агенты являются независимыми подрядчиками, они могли это сделать. Мы ничего юридически не могли сделать ни им, ни нашим поставщикам.

.

Смотрите также