3Д принтер как работает


3D-принтер: что это и как он работает? | GeekBrains

Описание возможностей 3д принтера и история его появления.

https://d2xzmw6cctk25h.cloudfront.net/post/1999/og_image/501bb6c82a53bb3bc2a0fee73b0c9e9e.png

В 2011 году принтер, который заправили биогелем, напечатал человеческую почку прямо во время конференции TED. Два года назад Adidas анонсировала новую модель кроссовок, которые печатают на 3D-принтере за 20 минут. А недавно компания Илона Маска SpaceX успешно провела испытания двигателей космического корабля, которые тоже напечатали на 3D-принтере.

В современном мире 3D-печать — это не удивительная технология будущего, а хорошо изученная реальность. Ее применяют в архитектуре, строительстве, медицине, дизайне, производстве одежды и обуви и других сферах. По запросу «3D-принтер» поисковики выдают сотни чертежей и прототипов разной сложности — от мыльницы и настольной лампы до автомобильного двигателя и даже жилого дома. 

Любой может купить принтер и напечатать чехол для смартфона, но дальше 3д печати по чертежу идут не все. В этой статье расскажем, когда появилась 3D-печать, как можно применять технологию и какие у нее перспективы.

Как появился трехмерный принтер

Не будем слишком утомлять вас датами и кратко перескажем историю 3D-печати.

Предвестник трехмерной печати. В начале 80-х доктор Хидео Кодама разработал систему быстрого прототипирования с помощью фотополимера — жидкого вещества на основе акрила. Технология печати была похожа на современную: принтер печатал объект по модели, послойно. 

Первый 3D-принтинг. Изготовление физических предметов с помощью цифровых данных продемонстрировал Чарльз Халл. В 1984 году, когда компьютеры еще не сильно отличались от калькуляторов, а до выхода Windows-95 было десять лет, он изобрел стереолитографию - предшественницу 3D-печати. Работала технология так: под воздействием ультрафиолетового лазера материал застывал и превращался в пластиковое изделие. Форму печатали по цифровым объектам, и это стало бумом среди разработчиков — теперь можно было создавать прототипы с меньшими издержками. 

Первый 3D-принтер. Источник: habr

Первый производитель 3D-принтеров. Через два года Чарльз Халл запатентовал технологию и открыл компанию по производству принтеров 3D Systems. Она выпустила первый аппарат для промышленной 3D-печати и до сих пор лидирует на рынке. Правда, тогда принтер называли иначе — аппаратом для стереолитографии.

Популярность 3D-печати и новые технологии. В конце 80-х 3D Systems запустила серийное производство стереолитографических принтеров. Но к тому времени появились и другие технологии печати: лазерное спекание и моделирование методом наплавления. В первом случае лазером обрабатывался порошок, а не жидкость. А по методу наплавления работает большинство современных 3D-принтеров. Термин «3D-печать» вошел в обиход, появились первые домашние принтеры.

Революция в 3D-печати. В начале нулевых рынок раскололся на два направления: дорогие сложные системы и те, что доступны каждому для печати дома. Технологию начали применять в специфических областях: впервые на 3D-принтере напечатали мочевой пузырь, который успешно имплантировали.

Печать тестового образца почки. Источник: BBC

В 2005 году появился первый цветной 3D-принтер с высоким качеством печати, который создавал комплекты деталей для себя и «коллег».

Как устроен 3D-принтер

В основном принтеры трехмерной печати состоят из одинаковых деталей и по устройству похожи на обычные принтеры. Главное отличие — очевидное: 3D-принтер печатает в трех плоскостях, и кроме ширины и высоты появляется глубина. 

Вот из каких деталей состоит 3D-принтер, не считая корпуса:

  • экструдер, или печатающая головка — разогревает поверхность, с помощью системы захвата отмеряет точное количество материала и выдавливает полужидкий пластик, который подается в виде нитей; 
  • рабочий стол (его еще называют рабочей платформой или поверхностью для печати) — на нем принтер формирует детали и выращивает изделия;
  • линейный и шаговый двигатели — приводят в движение детали, отвечают за точность и скорость печати;
  • фиксаторы — датчики, которые определяют координаты печати и ограничивают подвижные детали. Нужны, чтобы принтер не выходил за пределы рабочего стола, и делают печать более аккуратной;
  • рама — соединяет все элементы принтера.

Схема 3D-принтера. Источник: Lostprinters

Все это управляется компьютером.

Как создают изделия

За создание трехмерного изделия отвечает аддитивный процесс 3д-печати — это когда при изготовлении предмета слои материала накладываются друг на друга, снизу вверх, пока не получится копия формы в чертеже. Так печатают изделия из пластика. А фотополимерная печать работает по технологии стереолитографии (SLA): под воздействием лазерного излучателя фотополимеры затвердевают. Кроме пластика и фотополимерных смол, современные 3D-принтеры работают с металлоглиной и металлическим порошком. 

Печать состоит из непрерывных циклов, которые повторяются один за другим — на один слой материала наносится следующий, и печатающая головка двигается, пока на рабочей поверхности не окажется готовый предмет. Отходы печати принтер сам удаляет с рабочего стола.

Как работает 3D-чертеж

Принтер печатает изделие по 3D-чертежу: его создают на компьютере в специальной программе, затем сохраняют в формате STL. Этот файл выводят в программу резки для принтера — она помогает задать модели физические свойства изделия, например плотность. Далее программа преобразует модель в инструкцию для экструдера и выгружает ее на принтер, который начинает печатать изделие.

3D-чертеж легко сделать в домашних условиях — почитайте инструкцию на habr. 

Как запрограммировать 3D-принтер

Краткая инструкция по настройке принтера:

  1. Выбрать 3D-модель. Изделие можно нарисовать самому в специальном CAD-редакторе или найти готовый чертеж — в интернете полно моделей разной сложности.
  2. Подготовить 3D-модель к печати. Это делают методом слайсинга (slice — часть). К примеру, чтобы распечатать игрушку, ее модель нужно с помощью программ-слайсеров «разбить» на слои и передать их на принтер. Проще говоря, слайсер показывает принтеру, как печатать предмет: по какому контуру двигаться печатной головке, с какой скоростью, какую толщину слоев делать. 
  3. Передать модель принтеру. Из слайсера 3D-чертеж сохраняется в файл под названием G-code. Компьютер загружает файл в принтер и запускает 3д-печать.
  4. Наблюдать за печатью.

Можно ли применять напечатанные изделия

Зависит от качества материала, принтера и конечного изделия. Часто домашние принтеры неточно передают форму и цвет предмета. Изделия из пластика нужно дополнительно обработать: иногда они печатаются с заусенцами и дефектами и почти всегда с ребристой поверхностью. 

Изделие после и до обработки. Источник: 3D-Today

Для обработки поверхности есть несколько способов — не все подходят для домашнего применения:

  • механическая обработка — шлифовка вручную, срезание заусенцев;
  • химическая — погружение в ацетон, пескоструйная обработка, нанесение спецраствора кисточкой. 

Что можно напечатать на 3D-принтере

В интернете полно подборок с инструкциями для печати 3D-изделий. 3D-Today публикует фотографии работ владельцев принтеров, от мелких запчастей до скульптур. На «Хабре» уже три года назад постили список «50 крутых вещей для печати на 3D-принтере». Make3D написали о более масштабных проектах — печати автомобилей, оружия, солнечных батарей и протезов.

Есть ряд перспективных областей, в которых уже применяют 3D-печать.

Изготовление моделей по собственным эскизам. Константин Иванов, создатель сервиса 3DPrintus, в интервью «Афише» рассказал, что 3D-печать приведет к расцвету customizable things: любой сможет собрать и распечатать нужное изделие онлайн. Например, сделать модель робота и заказать его печать на промышленном принтере, создать и распечатать свой дизайн обручальных колец или обуви. Примеры таких проектов — Thinker Thing и Jweel. 

Быстрое прототипирование. Самая популярная область, в которой используют трехмерную печать. На 3D-принтерах делают тестовые модели протезов, прототипы лечебных корсетов, барельефов, олимпийского снаряжения.

Прототипы детских протезов, 3D-печать. Источник: 3D-Pulse

Сложная геометрия. 3D-принтер легко справляется с изготовлением моделей любой формы. Несколько примеров:

— в австралийском университете исследовали возможности 3D-принтера и напечатали табурет в форме отпечатка пальца;

— шеф-повар из Дании победил в конкурсе высокой кухни: он напечатал на 3D-принтере миниатюрные блюда сложной формы из морепродуктов и свекольного пюре;

Одно из победивших блюд шеф-повара. Источник: 3D-Pulse

— в немецком институте разработали систему для ускоренной 3D-печати — за 18 минут принтер изготавливает сложное геометрическое изделие высотой в 30 см. Обычно у принтеров уходит час на печать карманных фигурок.

Технологии 3D-печати 

Кратко об основных методах 3D-принтинга.

Стереолитография (SLA). В стереолитографическом принтере лазер облучает фотополимеры, и формирует каждый слой по 3D-чертежу. После облучения материал затвердевает. Прочность изделия зависит от типа полимера — термопластика, смол, резины. 

Цветную печать стереолитография не поддерживает. Из других недостатков — медленная работа, огромный размер стереолитографических установок, а еще нельзя сочетать несколько материалов в одном цикле.

Эта технология — одна из самых дорогих, но гарантирует точность печати. Принтер наносит слои толщиной 15 микрон — это в несколько раз тоньше человеческого волоса. Поэтому с помощью стереолитографии делают стоматологические протезы и украшения. 

Промышленные стереолитографические установки могут печатать огромные изделия, в несколько метров. Поэтому их успешно применяют в производстве самолетов, судов, в оборонной промышленности, медицине и машиностроении. 

Селективное лазерное спекание (SLS). Самый распространенный метод спекания порошковых материалов. Другие технологии — прямое лазерное спекание и выборочная лазерная плавка.

Метод изобрел Карл Декарт в конце восьмидесятых: его принтер печатал методом послойного вычерчивания (спекания). Мощный лазер нагревает небольшие частицы материала и двигается по контурам 3D-чертежа, пока изделие не будет готово. Технологию используют для изготовления не цельных изделий, а деталей. После спекания детали помещают в печь, где материал выгорает. SLS использует пластик, керамику, металл, полимеры, стекловолокно в виде порошка.

На атлете — кроссовки New Balance, которые изготовили с помощью лазерного спекания. Источник: 3D-Today

Технологию SLS используют для прототипов и сложных геометрических деталей. Для печати в домашних условиях SLS не подходит из-за огромных размеров принтера.

Послойная заливка полимера (FDM), или моделирование методом послойного наплавления. Этот способ 3d-печати изобретен американцем Скоттом Крампом. Работает FDM так: материал выводится в экструдер в виде нити, там он нагревается и подается на рабочий стол микрокаплями. Экструдер перемещается по рабочей поверхности в соответствии с 3D-моделью, материал охлаждается и застывает в изделие. 

Преимущества — высокая гибкость изделий и устойчивость к температурам. Для такой печати используют разные виды термопластика. FDM — самая недорогая среди 3D-технологий печати, поэтому принтеры популярны в домашнем использовании: для изготовления игрушек, сувениров, украшений. Но в основном моделирование послойным наплавлением используют в прототипировании и промышленном производстве — принтеры довольно быстро печатают мелкосерийные партии изделий. Предметы из огнеупорных пластиков изготовляют для космической отрасли. 

Струйная 3D-печать. Один из первых методов трехмерной печати — в 1993 году его изобрели американские студенты, когда усовершенствовали обычный бумажный принтер, и вскоре технологию приобрела та самая компания 3D Systems. 

Работает струйная печать так: на тонкий слой материала наносится связующее вещество по контурам чертежа. Печатная головка наносит материал по границам модели, и частицы каждого нового слоя склеиваются между собой. Этот цикл повторяется, пока изделие не будет готово. Это один из видов порошковой печати: раньше струйные 3D-принтеры печатали на гипсе, сейчас используют пластики, песчаные смеси и металлические порошки. Чтобы сделать изделие крепче, после печати его могут пропитывать воском или обжигать.

Предметы, которые напечатали по этой технологии, обычно долговечные, но не очень прочные. Поэтому с помощью струйной печати делают сувениры, украшения или прототипы. Такой принтер можно использовать дома. 

Эти конфеты сделали на кондитерском струйном 3D-принтере ChefJet: вместо пластика он использует воду, сахар, шоколад и пищевые красители. Источник: 3Dcream.ru

Еще струйную технологию используют в биопечати — наносят живые клетки друг на друга послойно и таким образом строят органические ткани. 

Где применяют 3D-печать

В основном в профессиональных сферах.

Строительство. На 3D-принтерах печатают стены из специальной цементной смеси и даже дома в несколько этажей. Например, Андрей Руденко еще в 2014 году напечатал на строительном принтере замок 3 × 5 метров. Такие 3D-принтеры могут построить двухэтажный дом за 20 часов.

Медицина. О печати органов мы уже упоминали, а еще 3D-принтеры активно используют в протезировании и стоматологии. Впечатляющие примеры — с помощью 3D-печати врачам удалось разделить сиамских близнецов, а кошке без четырех лап поставили протезы, которые напечатали на принтере. 

Подробнее о 3D-принтинге в медицине можно узнать в статье издания 3D-Pulse.

Космос. С помощью трехмерной печати делают оборудование для ракет, космических станций. Еще технологию используют в космической биопечати и даже в работе луноходов. Например, российская компания 3D Bioprinting Solutions отправит в космос живые бактерии и клетки, которые вырастят на 3D-принтере. Создатель Amazon Джефф Безос презентовал прототип лунного модуля с напечатанным двигателем, а космический стартап Relativity Space строит фабрику 3D-печати ракет. 

Авиация. 3D-детали печатают не только для космических аппаратов, но и для самолетов. Инженеры из лаборатории ВВС США изготавливают на 3D-принтере авиакомпоненты — например, элемент обшивки фюзеляжа — примерно за пять часов.

Архитектура и промышленный дизайн. На трехмерных принтерах печатают макеты домов, микрорайонов и поселков, включая инфраструктуру: дороги, деревья, магазины, освещение, транспорт. В качестве материала обычно используют недорогой гипсовый композит. 

Одно из необычных решений — дизайн бетонных баррикад от американского дизайнера Джо Дюсе. После терактов с грузовыми автомобилями, которые врезались в толпу людей, он предложил макет прочных и функциональных заграждений в виде конструктора, которые можно напечатать на 3D-принтере.

Изготовить прототип помогла компания UrbaStyle, которая печатает бетонные формы на строительных 3D-принтерах

Образование. С помощью 3D-печати производят наглядные пособия для детских садов, школ и вузов. В некоторых московских школах с 2016 года есть трехмерные принтеры: на уроках химии дети разглядывают 3D-модели молекул и проводят реакции в напечатанных пробирках, на физике изучают электрическую цепь на 3D-прототипе токопроводящего стенда, а еще сами печатают себе ручки на уроках ИЗО.

Узнать больше о 3D-технологиях в школах можно на сайте «Ассоциации 3D-образования». 

А еще 3D-печать помогает в быту, производстве одежды, украшений, картографии, изготовлении игрушек и дизайне упаковок.

Как работают 3D-принтеры?

Криса Вудфорда. Последнее изменение: 16 января 2020 г.

Даже лучшие художники изо всех сил стараются показать нам, какие объекты реального мира выглядят во всей своей трехмерной (3D) красе. Большую часть времени это не имеет значения - глядя на фотографию или эскиз, мы хорошая идея. Но если вы занимаетесь разработкой новых продукты, и вам нужно показать их клиентам или покупателям, ничто не сравнится с прототипом: модель, которую можно потрогать, подержать и Чувствовать.Беда только в том, что на изготовление моделей вручную уходит много времени. машины, которые могут создавать «быстрые прототипы», стоят целое состояние (до полмиллиона долларов). Ура, тогда 3D-принтеры, которые немного работают как струйные принтеры, и создавайте 3D-модели слой за слоем до 10 раз скорость и пятая стоимость. Как именно они работают? Давайте принимать внимательнее!

Фото: 3D-печать в действии: это печатающая головка принтера Invent3D, медленно создавая объект, слой за слоем, брызгая расплавленным синим пластиком из его точно движущегося сопла.Фото капрала. Джастин Апдеграфф любезно предоставлен Корпусом морской пехоты США.

От ручных прототипов до быстрого прототипирования

Фото: Качественный скоростной прототип космического самолета из воска. из чертежа САПР НАСА. Фото любезно предоставлено Исследовательским центром НАСА в Лэнгли (NASA-LaRC).

Раньше были такие вещи, как автоматизированное проектирование (САПР) и лазеры, модели и прототипы были кропотливо вырезаны из дерева или склеены из кусочков картона или пластика.Они могли взять дней или даже недель, чтобы заработать и обычно стоит целое состояние. Получение внесение изменений или дополнений было трудным и требовало много времени, особенно если использовалась сторонняя модельная компания, и это может оттолкнуть дизайнеров от внесения улучшений или принятия комментарии на борту в последнюю минуту: "Слишком поздно!"

С появлением более совершенных технологий, идея под названием быстрое прототипирование (RP) зародилась в 1980-х. как решение этой проблемы: это означает разработку моделей и прототипы более автоматизированными методами, обычно в часы или дни чем недели, на которые уходило традиционное прототипирование.3D печать является логическим продолжением этой идеи, в которой дизайнеры продукта делают собственные быстрые прототипы, за часы, с использованием сложных машин похожи на струйные принтеры.

Как работает 3D-принтер?

Artwork: Один из первых в мире трехмерных принтеров FDM, разработан С. Скоттом Крампом в 1980-х годах. В этом дизайне модель (розовая, 40) напечатана. на опорной плите (темно-синий, 10), который движется в горизонтальной (X-Y) направлениях, в то время печати головка и сопло (2 и 4, оранжевые) перемещаются в вертикальном (Z) направлении.В качестве сырья для печати используется пластиковый стержень (желтый, 46), оплавленный печатающей головкой. Процесс нагрева тщательно регулируется термопара (электрический датчик тепла), подключенная к регулятору температуры (фиолетовый, 86). Стержень выдавливается сжатым воздухом из большого резервуара и компрессор справа (зеленый, 60/62). С тех пор все немного изменилось, но основной принцип (создание объекта путем плавления и нанесения пластика под трехмерным контролем) остается прежним.Изображение из патента США 5,121,329: Устройство и метод для создания трехмерных объектов, автор С. Скотт Крамп, Stratasys Ltd, 9 июня 1992 г., любезно предоставлено Управлением по патентам и товарным знакам США.

Представьте, что вы строите обычный деревянный прототип автомобиля. Ты бы начните с бруска из цельного дерева и вырежьте внутрь, как скульптор, постепенно раскрывая «спрятанный» внутри предмет. Или если вы хотели сделать модель дома по проекту архитектора, вы бы построили это как настоящий сборный дом, вероятно, вырезанный миниатюрный копии стен из картона и их склейка.Теперь лазер может легко вырезать из дерева форму, и это не выходит за рамки сферы возможностей научить робота приклеивать картон вместе - но 3D-принтеры не работают ни одним из этих способов!

Типичный 3D-принтер очень похож на струйный принтер. с компьютера. Он создает 3D-модель по одному слою за раз из снизу вверх, путем многократной печати на одной и той же области методом, известным как Моделирование методом сплавленного осаждения (FDM) . Работая полностью автоматически, принтер создает модель в течение нескольких часов, поворачивая 3D CAD. втягивание в партии двухмерных, поперечных слои - эффективно разделяют 2D-отпечатки, расположенные один поверх другой, но без бумаги между ними.Вместо использования чернил, которые никогда не накапливаются объем, принтер наносит слои расплавленного пластика или порошка и соединяет их вместе (и с существующей структурой) с помощью клея или ультрафиолета.

Q: Какие «чернила» используются в 3D-принтере? A: АБС-пластик!

Там, где струйный принтер распыляет жидкие чернила, а лазерный принтер использует твердый порошок, 3D-принтер не использует ни того, ни другого: вы не можете построить 3D-модель, накапливая цветную воду или черную пыль! Вы можете моделировать пластик.3D-принтер по сути работает, выдавливая расплавленный пластик через крошечное сопло, которое он перемещает точно под компьютером контроль. Он печатает один слой, ждет, пока он высохнет, а затем печатает следующий слой поверх. В зависимости от качества принтера, то вы получите либо потрясающе выглядящую 3D-модель, либо множество двухмерных пластиковых линий, грубо лежащих на друг на друга - как глазурь для торта с плохо нанесенным каналом! Очевидно, что пластик, из которого печатаются модели, имеет огромное значение.

Фотография: Пластиковые корпуса компьютеров, компьютерной периферии (мыши, клавиатуры и принтеры) и других электронных устройств (калькуляторы и мобильные телефоны) обычно изготавливаются из АБС-пластика.Это внутренняя часть корпуса мобильного телефона, где показано место, где он отмечен символом переработки ABS (крупнее, вставка).

Когда мы говорим о пластике, мы обычно имеем в виду «пластик»: если вы прилежный переработчик, вы знаете, что существует много типов пластика, и все они различны как химически (в их молекулярном составе), так и физически (в их отношение к теплу, свету и т. д.). Неудивительно, что в 3D-принтерах используются термопласты (пластмассы, которые плавятся при нагревании и превращаются в твердые, когда снова охлаждают), и, как правило, тот, который называется АБС (акрилонитрилбутадиенстирол).Пожалуй, наиболее знакомый материал, из которого изготавливаются кирпичи LEGO®, ABS также широко используется в салонах автомобилей (иногда и во внешних деталях, таких как колпаки), для изготовления внутренних частей холодильников и в пластиковых деталях компьютеров (вполне вероятно, что это мышь и клавиатура, которые вы используете сейчас, сделаны из АБС-пластика).

Так почему этот материал используется для 3D-печати? На самом деле это смесь твердого и прочного пластика (акрилонитрил) с синтетическим каучуком (бутадиенстирол). Он идеально подходит для 3D-печати, потому что он твердый при комнатной температуре и плавится при температуре немногим выше 100 ° C (220 ° F), что достаточно прохладно, чтобы плавиться внутри принтера без слишком сильного нагрева, и достаточно горячее, чтобы модели, напечатанные с его помощью, выиграли ''. они тают, если их оставить на солнце.После застывания его можно отшлифовать или покрасить; Еще одним полезным свойством АБС является то, что он имеет бело-желтый цвет в необработанном виде, но могут быть добавлены пигменты (цветные химические вещества в краске), чтобы сделать его практически любым цветом. В зависимости от типа принтера, который вы используете, вы подаете на него пластик в виде маленьких шариков или нитей (например, пластиковых ниток).

Вам не обязательно печатать в 3D с помощью пластика: теоретически вы можете печатать объекты, используя любой расплавленный материал, который достаточно быстро затвердевает и схватывается.В июле 2011 года исследователи из Английский университет Эксетера представил прототип пищевого принтера, который может печатать 3D-объекты из расплавленного шоколада!

Преимущества и недостатки

Фото: B9Creator ™ - типичный недорогой 3D-принтер своими руками. Первоначально он был доступен в виде комплекта по цене 2495 долларов; теперь он приходит в собранном виде в трех разных версиях по цене от 6000 до 12000 долларов. Фото любезно предоставлено Винделлом Х. Оскей, www.evilmadscientist.com, опубликовано на Flickr в 2012 г. под лицензией Creative Commons.

Производители 3D-принтеров заявляют, что они в 10 раз быстрее, чем другими методами и в 5 раз дешевле, поэтому они дают большие преимущества для люди, которым нужны быстрые прототипы за часы, а не дни. Хотя 3D-принтеры высокого класса, они по-прежнему дороги (обычно около 25 000–50 000 долларов), они часть стоимости более сложных машин RP (которые входят в от 100 000 до 500 000 долларов), а гораздо более дешевые машины также доступны (вы можете купить комплект 3D-принтера Tronxy примерно за 100–200 долларов).Они также достаточно маленькие, безопасные, простые в использовании и надежны (функции, которые сделали их все более популярными в таких местах, как проектные / инженерные школы).

С другой стороны, отделка моделей, которые они производят, обычно уступает тем, которые производятся на станках с РП более высокого класса. Выбор материалы часто ограничиваются одним или двумя, цвета могут быть грубыми, и текстура может не очень хорошо отражать предполагаемую отделку продукта. Как правило, 3D-печатные модели может быть лучше для предварительной визуализации новых продуктов; Больше сложные машины RP могут быть использованы позже в процессе, когда проекты ближе к доработке и такие вещи, как точная поверхность текстуры более важны.

Приложения

Для чего можно использовать 3D-принтер? Это немного похоже на вопрос "Как много способов использовать копировальный аппарат? »Теоретически единственным ограничением является воображение. На практике пределы - это точность модель, с которой вы печатаете, точность вашего принтера и материалы, которыми вы печатаете. Современная 3D-печать была изобретена около 25 лет назад, но по-настоящему он начал набирать обороты только в последнее десятилетие. Много технология все еще относительно новая; даже в этом случае диапазон использования 3D-печати довольно удивительно.

Медицина

Фото: пластиковые сердца, напечатанные на 3D-принтере, позволяют хирургам проводить операции без риска. Модель доктора Мэтью Брамлета. Фотография, являющаяся общественным достоянием, опубликована на Flickr благодаря галерее изображений NIH США и 3D Print Exchange.

Жизнь - это путешествие в один конец; склонные к ошибкам стареющие люди со складками, осыпающиеся тела, естественно, видят большие перспективы в технологии, которая возможность создания заменяющих частей тела и тканей. Поэтому врачи были одними из первых, кто начал изучать 3D-печать.Уже у нас видел 3D-печатные уши (от индийской компании Novabeans), руки и ноги (от Limbitless Solutions, Biomechanical Robotics Group и Bespoke) и мускулы (от Корнельского университета). 3D-принтеры имеют также использовались для производства искусственной ткани (Organovo), клеток (Samsara Sciences) и кожа (в партнерстве косметических гиганты L'Oreal и Organovo). Хотя мы еще далеки от того, чтобы полные 3D-печатные заменяющие органы (например, сердце и печень), все быстро движется в этом направлении.Один проект, известный как Тело на чипе, управляется Институтом регенеративной медицины Уэйк Форест в Северной Каролине, печатает миниатюрные человеческие сердца, легкие и кровеносные сосуды, помещает их на микрочип и проверяет их искусственной крови.

Помимо сменных частей тела, все чаще используется 3D-печать. используется для медицинского образования и обучения. В детском доме Никлауса Больница в Майами, Флорида, хирурги практикуют операцию на 3D-копии детских сердечек.В другом месте то же самое Техника используется для репетиции операции на головном мозге.

Аэрокосмическая и оборонная промышленность

Разработка и испытание самолетов - дело сложное и дорогое: Boeing Dreamliner содержит около 2,3 миллиона компонентов! Хотя компьютерные модели могут использоваться для проверки нескольких аспектов того, как самолеты вести себя, точные прототипы еще нужно сделать для таких вещей, как испытания в аэродинамической трубе. А 3D-печать - простой и эффективный способ сделай это. В то время как коммерческие самолеты строятся в большом количестве, военные самолеты, скорее всего, будут сильно индивидуализированы, а 3D-печать позволяет проектировать, испытывать и производить мелкосерийные или единичные детали как быстро и экономично.

Фото: ВМС США с тех пор тестируют 3D-принтеры на кораблях. один был установлен на USS Essex в 2014 году. Теоретически бортовой принтер делает корабль более самодостаточным, с меньшим количеством запасных частей и материалов, особенно в военное время. Это подводное беспроводное зарядное устройство, напечатанное на 3D-принтере. типично для объектов, которые могут быть напечатаны во время миссии в море. Фото Девина Писнера любезно предоставлено ВМС США.

Космические аппараты даже сложнее самолетов и имеют дополнительные недостаток в том, что они «производятся» в крошечных количества - иногда бывает только один.Вместо того, чтобы идти на все расходы изготовления уникальных инструментов и производственного оборудования, он может многое Разумнее печатать на 3D-принтере одноразовые компоненты. Но зачем вообще делать части космоса на Земле? Доставка сложных и тяжелых конструкций в пространство сложно, дорого и требует много времени; способность к производить вещи на Луне или на других планетах, может оказаться бесценно. Легко представить космонавтов (или даже роботов) в 3D. принтеры для производства любых предметов, которые им нужны (включая запасные частей), вдали от Земли, когда они им нужны.Но даже обычные космические проекты, порожденные Землей, могут извлечь выгоду из скорость, простота и дешевизна 3D-печати. Последний, поддерживаемый людьми НАСА Ровер использует детали, напечатанные на 3D-принтере, изготовленные с помощью Stratasys.

Фото: Запасные части и ремонт - без проблем. Крупным планом - 3D-принтер Lulzbot Taz 6, который используется для изготовления запасных частей на борту военного корабля США. Фото Кристофера А. Велойказы любезно предоставлено ВМС США.

Визуализация

Создание прототипов самолетов или космических ракет является примером гораздо более широкое применение для 3D-печати: визуализация того, как новые дизайны будут смотреть в трех измерениях.Мы можем использовать такие вещи, как виртуальная реальность для это, конечно, но люди часто предпочитают то, что видят и прикоснуться. Все чаще 3D-принтеры используются для быстрого и точного архитектурное моделирование. Хотя мы (пока) не можем печатать 3D в материалах такие как кирпич и бетон, есть широкий ассортимент пластмасс доступны, и их можно раскрасить, чтобы они выглядели как реалистичные здания отделка. Таким же образом 3D-печать теперь широко используется для прототипирование и тестирование промышленных и потребительских товаров. Поскольку многие повседневные вещи вылеплены из пластика, 3D-печатная модель может выглядеть очень похож на готовый продукт - идеально подходит для фокус-группы тестирование или исследование рынка.

Персонализированные товары

От пластиковых зубных щеток до фантиков - современная жизнь здесь-сегодня, ушел-завтра - удобно, недорого и одноразово. Однако не все ценят серийное массовое производство. вот почему так популярны дорогие «дизайнерские этикетки». в в будущем многие из нас смогут воспользоваться преимуществами доступные, персонализированные продукты, изготовленные по индивидуальному заказу Технические характеристики. Ювелирные изделия и модные аксессуары уже печатается в 3D.Так же, как веб-сайт Etsy создал всемирное сообщество ремесленников, поэтому Zazzy воспроизвел что с использованием технологии 3D-печати. Благодаря простым онлайн-сервисам вроде Shapeways, каждый может сделать свои собственные ник-нэки на 3D-принтере для себя или для себя. продавать другим людям без затрат и хлопот, связанных с использованием собственного 3D-принтера (даже Staples теперь предлагает услуги 3D-печати в некоторых своих магазинах).

«Товары по индивидуальному заказу» - это не просто вещи, которые мы покупаем и используем: еда, которую мы едим, тоже может попасть в эту категорию.На приготовление нужно время, умение и терпение, потому что готовится аппетитный еда выходит далеко за рамки смешивания ингредиентов и нагревания их на плите. Поскольку большинство продуктов можно выдавливать (выдавливать через сопла), они могут (теоретически) также можно напечатать в 3D. Несколько лет назад, Зло Безумный Scientist Laboratories в шутку напечатали какие-то странные предметы из сахар. В 2013 году New York Times обозреватель А.Дж. Джейкобс поставил перед собой задачу распечатать всю еду, включая тарелку и столовые приборы. в он случайно натолкнулся на работу Ход Липсона из Корнельского университета, кто верит, что еда может быть когда-нибудь лично, напечатана на 3D-принтере точные потребности вашего организма в питании.Что аккуратно переносит нас в будущее ...

Фото: Теоретически вы можете делать 3D-отпечатки из любого сырья, в которое вы можете загружать ваш принтер. Вот несколько фантастических 3D-объектов, напечатанных из сахарного песка "CandyFab 4000" (взломанный старый плоттер HP) от всегда занятных людей в лабораториях злых безумных ученых. Фотография любезно предоставлена ​​Винделлом Х. Оскей, www.evilmadscientist.com, опубликована на Flickr в 2007 году по лицензии Creative Commons License.

Будущее 3D-печати

Многие люди верят, что 3D-печать возвестит не только о приливной волне нахальных пластиковых уловок, но революция в обрабатывающей промышленности и мировая экономика, которой он управляет.Хотя 3D-печать будет безусловно, позволяет нам делать наши собственные вещи, есть ограничить то, что вы можете достичь самостоятельно с помощью дешевого принтера и трубка из пластика. Реальные экономические выгоды могут быть получены, когда 3D-печать повсеместно принята крупными компаниями в качестве центрального столп обрабатывающей промышленности. Во-первых, это позволит производители предлагают гораздо больше возможностей настройки существующих продуктов, Таким образом, доступность готового массового производства будет в сочетании с привлекательностью одноразового ремесла, сделанного на заказ.Во-вторых, 3D-печать - это, по сути, роботизированная технология, поэтому она будет снизить стоимость производства до такой степени, что опять же, экономически выгодно производить товары в Северной Америке и Европа, которую в настоящее время собирают дешево (плохо оплачиваемыми людьми) в таких местах, как Китай и Индия. Наконец, 3D-печать повысит производительность (поскольку для изготовления тех же вещей потребуется меньше людей), снижение общие затраты на производство, что должно привести к снижению цен и больший спрос - и это всегда хорошо для потребителей, производители и экономика.

.

Насколько точно работает 3D-печать?

3D-печать - это универсальный метод производства и быстрого прототипирования. За последние несколько десятилетий он произвел фурор во многих отраслях по всему миру.

3D-печать является частью семейства производственных технологий, называемых аддитивным производством. Это описывает создание объекта путем добавления материала к объекту слой за слоем. На протяжении всей своей истории аддитивное производство носило различные названия, включая стереолитографию, трехмерное наслоение и трехмерную печать, но наиболее известной является трехмерная печать.

Так как же работают 3D-принтеры?

СВЯЗАННЫЕ С: НАЧНИТЕ СОБСТВЕННЫЙ БИЗНЕС ПО 3D-ПЕЧАТИ: 11 ИНТЕРЕСНЫХ КЕЙСОВ КОМПАНИЙ, ИСПОЛЬЗУЮЩИХ 3D-ПЕЧАТЬ

Как работает 3D-принтер?

Процесс 3D-печати начинается с создания графической модели печатаемого объекта. Обычно они разрабатываются с использованием пакетов программного обеспечения для автоматизированного проектирования (САПР), и это может быть наиболее трудоемкой частью процесса. Для этого используются программы TinkerCAD, Fusion360 и Sketchup.

Для сложных продуктов эти модели часто тщательно тестируются в имитационном моделировании на предмет потенциальных дефектов в конечном продукте. Конечно, если объект для печати носит чисто декоративный характер, это менее важно.

Одним из основных преимуществ 3D-печати является то, что она позволяет быстро создавать прототипы практически всего. Единственное реальное ограничение - это ваше воображение.

На самом деле, есть объекты, которые просто слишком сложны для создания в более традиционных процессах производства или прототипирования, таких как фрезерование или формование с ЧПУ.Это также намного дешевле, чем многие другие традиционные методы производства.

После проектирования следующим этапом является цифровая нарезка модели для ее печати. Это жизненно важный шаг, поскольку 3D-принтер не может концептуализировать 3D-модель таким же образом, как вы или я. Процесс нарезки разбивает модель на множество слоев. Затем дизайн каждого слоя отправляется в печатающую головку для печати или укладки по порядку.

Процесс нарезки обычно завершается с помощью специальной программы для резки, такой как CraftWare или Astroprint.Это программное обеспечение для срезов также обрабатывает "заливку" модели, создавая решетчатую структуру внутри твердотельной модели для дополнительной устойчивости, если это необходимо.

Это также область, в которой 3D-принтеры преуспевают. Они способны печатать очень прочные материалы с очень низкой плотностью за счет стратегического добавления воздушных карманов внутри конечного продукта.

Программное обеспечение слайсера также добавит столбцы поддержки, где это необходимо. Это необходимо, потому что пластик не может быть уложен в воздухе, а столбцы помогают принтеру заполнять промежутки.Затем эти столбцы при необходимости удаляются.

После того, как программа слайсера сработала, данные отправляются на принтер для заключительного этапа.

Источник: Интересный машиностроительный цех

Отсюда сам 3D-принтер берет верх. Он начнет распечатывать модель в соответствии с конкретными инструкциями программы слайсера, используя разные методы, в зависимости от типа используемого принтера. Например, прямая 3D-печать использует технологию, аналогичную струйной технологии, в которой сопла перемещаются вперед и назад, вверх и вниз, распределяя густой воск или пластмассовые полимеры, которые затвердевают, образуя каждое новое поперечное сечение 3D-объекта.В многоструйном моделировании используются десятки работающих одновременно струй для более быстрого моделирования.

При 3D-печати связующим сопла для струйной печати наносят тонкий сухой порошок и жидкий клей или связующее, которые вместе образуют каждый напечатанный слой. Принтеры для переплета делают два прохода для формирования каждого слоя. Первый проход наносит тонкий слой порошка, а второй проход использует сопла для нанесения связующего.

При фотополимеризации капли жидкого пластика подвергаются воздействию лазерного луча ультрафиолетового света, который превращает жидкость в твердое тело.

Спекание - это еще одна технология 3D-печати, которая включает плавление и сплавление частиц вместе для печати каждого последующего слоя. Соответствующее селективное лазерное спекание основано на использовании лазера для плавления огнестойкого пластикового порошка, который затем затвердевает, образуя печатный слой. Спекание также можно использовать для изготовления металлических предметов.

Процесс 3D может занять часы или даже дни, в зависимости от размера и сложности проекта.

«Есть несколько более быстрых технологий, производящих всплески в отрасли, например, Carbon M1, в котором используются лазеры, выстреливаемые в слой жидкости и вытягивающие отпечаток из него, что значительно ускоряет процесс.Но эти типы принтеров во много раз сложнее, намного дороже и пока работают только с пластиком ». - howtogeek.com.

Независимо от того, какой тип 3D-принтера используется, общий процесс печати обычно одинаков.

  • Шаг 1: Создание 3D-модели с помощью программного обеспечения CAD.
  • Шаг 2: Чертеж CAD преобразуется в формат стандартного языка тесселяции (STL). Большинство 3D-принтеров используют файлы STL в дополнение к другим типам файлов такие как ZPR и ObjDF.
  • Шаг 3: Файл STL передается на компьютер, который управляет 3D-принтером. Там пользователь указывает размер и ориентацию для печати.
  • Шаг 4: Сам 3D-принтер настроен. У каждой машины свои требования к настройке, такие как заправка полимеров, связующих и других расходных материалов, которые будет использовать принтер.
  • Шаг 5: Запустите машину и дождитесь завершения сборки. В это время следует регулярно проверять машину, чтобы убедиться в отсутствии ошибок.
  • Шаг 6: Напечатанный объект удален из аппарата.
  • Шаг 7: Последний шаг - пост-обработка. Многие 3D-принтеры требуют некоторой постобработки, такой как удаление остатков порошка щеткой или промывка печатного объекта для удаления водорастворимых подложек. Новый объект также может нуждаться в лечении.

Что умеет делать 3D-принтер?

Как мы уже видели, 3D-принтеры невероятно универсальны.Теоретически они могут создать практически все, о чем вы можете подумать.

Но они ограничены видами материалов, которые они могут использовать для «чернил», и их размером. Для очень больших объектов, например дома, вам нужно будет распечатать отдельные части или использовать очень большой 3D-принтер .

3D-принтеры могут печатать в пластике, бетоне, металле и даже клетках животных. Но большинство принтеров предназначены для использования только одного типа материала.

Некоторые интересные примеры объектов, напечатанных на 3D-принтере, включают, но не ограничиваются: -

  • Протезы конечностей и других частей тела
  • Дома и другие здания
  • Продукты питания
  • Медицина
  • Огнестрельное оружие
  • Жидкие структуры
  • Стекло продукты
  • Акриловые объекты
  • Реквизит для фильмов
  • Музыкальные инструменты
  • Одежда
  • Медицинские модели и устройства

3D-печать, несомненно, находит применение во многих отраслях промышленности.

Какие существуют типы программного обеспечения для 3D-печати?

В различных программах САПР используются различные форматы файлов, но некоторые из наиболее распространенных:

  • STL - стандартный язык тесселяции, или STL - это формат 3D-рендеринга, который обычно может только один цвет. Обычно это формат файла, который используют большинство настольных 3D-принтеров.
  • VRML - язык моделирования виртуальной реальности, файл VRML - это новый формат файла.Они обычно используются для принтеров с более чем одним экструдером и позволяют создавать многоцветные модели.
  • AMF - формат файла аддитивного производства, это открытый стандарт на основе .xml для 3D-печати. Он также может поддерживать несколько цветов.
  • GCode - GCode - это еще один формат файла, который может содержать подробные инструкции для 3D-принтера, которым он должен следовать при укладке каждого среза.
  • Другие форматы - Другие производители 3D-принтеров также имеют свои собственные форматы файлов.

Каковы преимущества 3D-печати?

Как мы уже упоминали выше, 3D-печать может иметь различные преимущества по сравнению с более традиционными производственными процессами, такими как литье под давлением или фрезерование с ЧПУ.

3D-печать - это аддитивный процесс, а не вычитающий, как фрезерование с ЧПУ. 3D-печать строит вещи слой за слоем, в то время как позже постепенно удаляет материал из твердого блока, чтобы создать продукт. Это означает, что в некоторых случаях 3D-печать может быть более ресурсоэффективной, чем ЧПУ.

Другой пример традиционных производственных процессов, литье под давлением, отлично подходит для изготовления множества объектов в больших объемах. Хотя его можно использовать для создания прототипов, литье под давлением лучше всего подходит для крупномасштабного массового производства утвержденного дизайна продукта. Однако 3D-печать лучше подходит для мелкосерийного, ограниченного производства или создания прототипов.

В зависимости от области применения 3D-печать имеет ряд других преимуществ перед другими производственными процессами. К ним относятся, но не ограничиваются:

  • Более быстрое производство - Хотя время от времени 3D-печать медленная, она может быть быстрее, чем некоторые традиционные процессы, такие как литье под давлением и субтрактивное производство.
  • Легкодоступный - 3D-печать существует уже несколько десятилетий и резко выросла примерно с 2010 года. Сейчас доступно большое количество разнообразных принтеров и пакетов программного обеспечения (многие из них с открытым исходным кодом), что позволяет практически любому узнать, как это сделать.
Источник: Pixabay
  • Продукция более высокого качества - 3D-печать обеспечивает неизменно высокое качество продукции. Если модель точна и соответствует назначению, и используется принтер одного и того же типа, конечный продукт обычно всегда будет одинакового качества.
  • Отлично подходит для проектирования и тестирования продукции. - 3D-печать - один из лучших инструментов для проектирования и тестирования продукции. Он предлагает возможности для проектирования и тестирования моделей, позволяющих легко дорабатывать их.
  • Рентабельность - 3D-печать, как мы видели, может быть рентабельным средством производства. После создания модели процесс обычно автоматизируется, а отходы сырья обычно ограничиваются.
  • Дизайн изделий почти бесконечен - Возможности 3D-печати практически безграничны.Пока он может быть разработан в САПР, а принтер достаточно большой, чтобы его напечатать, нет предела.
  • 3D-принтеры могут печатать с использованием различных материалов. - Некоторые 3D-принтеры действительно могут смешивать материалы или переключаться между ними. В традиционной печати это может быть сложно и дорого.
.

Как работают 3D-принтеры | Министерство энергетики

На этой неделе мы празднуем запуск новой серии на Energy.gov: Как работает энергия.

Три года назад печать трехмерных объектов дома могла бы звучать как вещь из The Jetsons . Но всего за несколько коротких лет 3D-печать резко выросла, превратившись из нишевой технологии в революционную инновацию, которая захватывает воображение как крупных производителей, так и любителей.

3D-печать может произвести революцию в производстве, позволяя компаниям (и частным лицам) разрабатывать и производить продукты по-новому, а также сокращать отходы материалов, экономить энергию и сокращать время, необходимое для вывода продуктов на рынок.

Что такое 3D-печать?

Технология 3D-печати, впервые изобретенная в 1980-х годах инженером и физиком Чаком Халлом, прошла долгий путь. 3D-печать, также называемая аддитивным производством, - это процесс создания объекта путем нанесения материала по одному крошечному слою за раз.

Основная идея аддитивного производства может быть найдена в горных породах глубоко под землей (капающая вода откладывает тонкие слои минералов, формируя сталактиты и сталагмиты), но более современным примером является обычный настольный принтер. Подобно тому, как струйный принтер добавляет отдельные точки чернил для формирования изображения, 3D-принтер добавляет материал только там, где это необходимо, на основе цифрового файла.

Для сравнения, многие традиционные производственные процессы, которые недавно получили название «субтрактивное производство», требуют вырезания лишних материалов для изготовления желаемой детали.Результат: согласно данным Национальной лаборатории Ок-Ридж при Министерстве энергетики США, субтрактивное производство может тратить до 30 фунтов материала на каждый фунт полезного материала в некоторых частях.

В некоторых процессах 3D-печати около 98 процентов сырья используется для изготовления готовой детали. Не говоря уже о том, что 3D-печать позволяет производителям создавать новые формы и более легкие детали, которые используют меньше сырья и требуют меньшего количества этапов производства. В свою очередь, это может привести к снижению энергопотребления для 3D-печати - до 50 процентов меньше энергии для определенных процессов по сравнению с обычными производственными процессами.

Хотя возможности аддитивного производства безграничны, сегодня 3D-печать в основном используется для создания небольших, относительно дорогих компонентов с использованием пластмасс и металлических порошков. Тем не менее, поскольку цена настольных 3D-принтеров продолжает падать, некоторые новаторы экспериментируют с различными материалами, такими как шоколад и другие продукты питания, воск, керамика и биоматериалы, подобные человеческим клеткам.

Как работает 3D-принтер?

Технологии аддитивного производства бывают разных форм и размеров, но независимо от типа 3D-принтера или материала, который вы используете, процесс 3D-печати следует одним и тем же основным этапам.

Он начинается с создания трехмерного чертежа с использованием программного обеспечения для автоматизированного проектирования (обычно называемого САПР). Создатели ограничены только своим воображением. Например, 3D-принтеры используются для производства всего: от роботов и протезов до обуви и музыкальных инструментов на заказ. Национальная лаборатория Ок-Ридж даже сотрудничает с компанией, чтобы создать первый автомобиль, напечатанный на 3D-принтере с использованием крупномасштабного 3D-принтера, а America Makes - президентский экспериментальный институт производственных инноваций, специализирующийся на 3D-печати - недавно объявил, что предоставляет финансирование для новый недорогой 3D-принтер по металлу.

После создания 3D-чертежа принтер необходимо подготовить. Это включает заправку сырья (например, пластиков, металлических порошков или связующих растворов) и подготовку платформы для сборки (в некоторых случаях вам может потребоваться очистить ее или нанести клей, чтобы предотвратить перемещение и деформацию от тепла во время процесса печати) .

Как только вы нажмете «Печать», машина автоматически построит желаемый объект. Хотя процессы печати различаются в зависимости от типа технологии 3D-печати, экструзия материала (которая включает в себя ряд различных типов процессов, таких как моделирование методом наплавления) является наиболее распространенным процессом, используемым в настольных 3D-принтерах.

Экструзия материала работает как клеевой пистолет. Печатный материал - обычно пластиковая нить - нагревается до тех пор, пока не станет жидким, и выдавлен через сопло для печати. Используя информацию из цифрового файла - дизайн разделен на тонкие двухмерные поперечные сечения, чтобы принтер точно знал, куда положить материал - сопло наносит полимер тонкими слоями, часто толщиной 0,1 миллиметра. Полимер быстро затвердевает, связываясь с нижележащим слоем, прежде чем платформа сборки опустится, а печатающая головка добавит еще один слой.В зависимости от размера и сложности объекта весь процесс может занять от нескольких минут до нескольких дней.

После завершения печати каждый объект требует небольшой постобработки. Это может варьироваться от отклеивания объекта от платформы сборки до удаления поддерживающих структур (временный материал, напечатанный для поддержки выступов на объекте) и удаления излишков порошка.

Виды 3D-принтеров

За прошедшие годы индустрия 3D-печати резко выросла, создав новые технологии (и новый язык для описания различных процессов аддитивного производства).Чтобы упростить этот язык, ASTM International - международная организация по стандартизации - выпустила в 2012 году стандартную терминологию, в которой технологии аддитивного производства были разделены на семь широких категорий. Ниже приведены краткие сведения о различных типах 3D-печати (с экструзией материала, описанной в предыдущем разделе).

  • Распыление материала : Как и в стандартном настольном принтере, при струйной печати материал наносится через головку струйного принтера. В процессе обычно используется пластик, который требует света для его затвердевания (так называемый фотополимер), но он также может печатать воски и другие материалы.Хотя с помощью струйной печати можно производить точные детали и включать несколько материалов за счет использования дополнительных сопел струйных принтеров, машины относительно дороги, а время сборки может быть медленным.
  • Обработка связующего вещества : При струйной очистке связующего тонкий слой порошка (это может быть что угодно, от пластика или стекла до металла или песка) катится по платформе сборки. Затем головка принтера распыляет связующий раствор (похожий на клей), чтобы соединить порошок только в местах, указанных в цифровом файле.Процесс повторяется до тех пор, пока объект не будет готов к печати, а лишний порошок, который поддерживал объект во время сборки, удаляется и сохраняется для дальнейшего использования. Распыление связующего можно использовать для создания относительно больших деталей, но это может быть дорогостоящим, особенно для больших систем.
  • Наплавление в порошковом слое : сплавление в порошковом слое аналогично распылению связующего, за исключением того, что слои порошка сплавлены вместе (расплавлены или спечены - процесс, в котором используется тепло или давление для образования твердой массы материала без его плавления) с использованием источник тепла, такой как лазер или электронный луч.Хотя процессы в порошковом слое позволяют производить высококачественные, прочные полимерные и твердые металлические детали, выбор сырья для этого типа аддитивного производства ограничен.
  • Направленное выделение энергии : Направленное выделение энергии может иметь множество форм, но все они следуют базовому процессу. Проволока или порошковый материал наносится тонкими слоями и плавится с использованием источника высокой энергии, такого как лазер. Системы направленного осаждения энергии обычно используются для ремонта существующих деталей и создания очень больших деталей, но с этой технологией эти детали часто требуют более обширной постобработки.
  • Ламинирование листов : Системы ламинирования листов скрепляют тонкие листы материала (обычно бумаги или металла) вместе с использованием клея, низкотемпературных источников тепла или других форм энергии для создания трехмерного объекта. Системы ламинирования листов позволяют производителям печатать с использованием материалов, чувствительных к нагреванию, таких как бумага и электроника, и предлагают самые низкие материальные затраты по сравнению с любым аддитивным процессом. Но этот процесс может быть немного менее точным, чем некоторые другие типы систем аддитивного производства.
  • Vat Photopolymerization : Фотополимеризация - самый старый тип 3D-принтеров - использует жидкую смолу, которая отверждается с помощью специального света для создания 3D-объекта. В зависимости от типа принтера, он использует лазер или проектор для запуска химической реакции и упрочнения тонких слоев смолы. Эти процессы позволяют создавать очень точные детали с мелкими деталями, но выбор материалов ограничен, а машины могут быть дорогими.
Создание страны Создателей

Хотя 3D-печать не нова, недавние достижения в этой технологии (наряду с ростом популярности таких сайтов, как Esty и Kickstarter) вызвали творческий ренессанс производства - когда любой, у кого есть доступ к принтеру, является производителем, а настройка продукта - почти без ограничений.

3D-принтеры и другие производственные технологии превращают потребителей в творцов - или производителей вещей. Это движение, часто называемое Движением создателей, помогает стимулировать инновации и создавать совершенно новый способ ведения бизнеса. Продукты больше не нужно производить массово - их можно изготавливать небольшими партиями, печатать на месте или настраивать под индивидуальные потребности.

Этот новый образ мышления проникает и в класс через доступ к 3D-принтерам.Студенты не ограничиваются придумыванием крутых, новых идей - они могут воплотить их в жизнь, и это вдохновляет их заниматься STEM (наука, технология, инженерия и математика). Чтобы познакомить студентов с аддитивным производством и его потенциалом, Министерство энергетики, Национальная лаборатория Окриджа и America Makes пожертвовали почти 450 3D-принтеров командам, участвующим в конкурсе FIRST Robotics в этом году.

Подъем Движения Создателей, поддерживаемый как молодыми, так и старыми, представляет огромные возможности для Соединенных Штатов.Он может создать основу для новых продуктов и процессов, которые помогут оживить американское производство. Чтобы отметить этот потенциал, президент Обама организовал в Белом доме первую ярмарку Maker Faire, которая позволила новаторам и предпринимателям всех возрастов показать, что они сделали, и поделиться тем, чему они научились.

Будущее 3D-печати

Аддитивное производство не только влияет на движение производителей, но и меняет способ ведения бизнеса компаниями и федеральными агентствами.

Компании обращаются к аддитивному производству, чтобы создавать детали, которые раньше были невозможны - многие указывают на то, что GE использует 3D-принтеры для создания топливных форсунок для нового реактивного двигателя, которые прочнее и легче обычных деталей - и Федеральные агентства изучают способы использования этой технологии для более эффективного выполнения своих задач.Министерство здравоохранения и социальных служб США создало биржу 3D-печати NIH, чтобы лучше делиться биомедицинскими моделями для 3D-печати среди медицинского сообщества, в то время как НАСА изучает, как 3D-печать работает в космосе.

Тем не менее, это лишь верхушка айсберга, когда речь идет о потенциале аддитивного производства. Для производителей аддитивное производство позволит создать широкий спектр новых продуктов, которые могут повысить конкурентоспособность отрасли, снизить энергопотребление в отрасли и способствовать развитию экономики экологически чистой энергии.

Министерство энергетики предоставляет компаниям доступ к технологиям 3D-печати и обучает их - от помощи в финансировании America Makes, государственно-частного партнерства, призванного сделать США лидером в области 3D-печати, до создания производственного демонстрационного центра в лаборатории Oak Ridge Lab. - и будущие инженеры - о возможностях технологии. Чтобы обеспечить развитие технологий, национальные лаборатории Департамента в партнерстве с промышленностью создают новую технологию 3D-печати.Национальная лаборатория Лоуренса Ливермора недавно объявила о сотрудничестве в области разработки новых материалов, оборудования и программного обеспечения для 3D-печати, а Национальная лаборатория Ок-Ридж сотрудничает с целью разработки новой коммерческой системы аддитивного производства, которая в 200-500 раз быстрее и может печатать пластиковые компоненты в 10 раз больше, чем современные коммерческие 3D-принтеры.

По мере того, как цены падают, а технологии становятся быстрее и точнее, 3D-печать готова изменить отношение компаний и потребителей к производству - примерно так же, как первые компьютеры привели к быстрому доступу к знаниям, которые мы сейчас принимаем за предоставляется.

Чтобы узнать больше о 3D-печати Министерства энергетики, посетите веб-сайт Advanced Manufacturing Office.

.

Как работает 3D-принтер?

Думаете, 3D-печать приносит пользу только инженерам и крупным корпорациям? Подумай еще раз.

Трехмерная печать, также называемая аддитивным производством, может еще не стать обычной домашней технологией. Однако благодаря постоянным инновациям в этой области 3D-печать революционизирует традиционные отрасли печати и производства.

Очень важно сначала понять, что такое 3D-печать, как работают эти принтеры и как 3D-принтер может стать интересным дополнением к вашему дому или бизнесу.

Что такое 3D-печать и как работает 3D-принтер?

По своей сути, 3D-печать - это создание трехмерного твердого объекта, напечатанного последовательными тонкими слоями материала в соответствии с указаниями создаваемого вами цифрового файла. Первоначально эта технология принесла наибольшую пользу создателям инженерных прототипов, но недавние достижения расширили возможности 3D-печати в различных отраслях и даже увеличили использование 3D-принтеров в домашних условиях.

Как работают 3D-принтеры

Объекты, напечатанные на 3D-принтере, начинаются с цифрового чертежа, созданного с помощью программного обеспечения для автоматизированного проектирования (САПР).Оттуда единственными ограничениями для создателей являются доступ к сырью для процесса печати и их собственное воображение.

Имея готовый чертеж, создатели 3D-печати просто:

  • Соберите сырье
  • Заполните принтер материалами
  • Подготовьте платформу 3D-сборки
  • Позвольте 3D-принтеру творить чудеса

Физический объект - это напечатанный слой по слою в соответствии с чертежом программного обеспечения для автоматизированного проектирования (САПР), пока он не будет завершен.3D-принтеры могут использовать разные технологии или методы, но вот четыре наиболее распространенных процесса 3D-печати:

  • Polyjet
  • Стереолитография (SLA)
  • Цифровая лазерная проекция (DLP)
  • Моделирование осаждения волокон (FDM), также известное как производство плавленых волокон

Каждая конкретная технология 3D-печати имеет свои недостатки и преимущества, включая стоимость, возможности и тип используемых материалов. Обширные исследования и полное понимание ваших намерений являются ключом к выбору наилучшего решения для вашего дома, бизнеса или организации.

Что используют 3D-принтеры для печати материалов?

В то время как материалами для 3D-печати обычно были металлы и пластмассы, недавние инновации расширили типы используемых материалов. Это заставляет ответить на вопрос: «Из чего сделана 3D-печать?» сложно, поскольку это может быть практически любой материал, который только можно вообразить.

Помимо материалов, которые могут использовать 3D-принтеры, очень важно, чтобы эти принтеры использовали их эффективно при извлечении и утилизации любого неиспользованного материала.

В результате 3D-печать стала модернизировать множество отраслей в сфере традиционного производства и за ее пределами.

Рассмотрим следующие варианты использования 3D-печати в различных отраслях:

  • Настройка и печать автозапчастей
  • Отливка из бетона для архитектурных и инженерных проектов
  • Сборка манекенов для моделирования столкновений для лучшего моделирования столкновений, особенно для пожилых пассажиров
  • Использование изомальтового сахара в качестве основы для создания сложных биологических структур для роста человеческих клеток и тканей

Список можно продолжить, но ваш следующий вопрос может заключаться в том, что делает 3D-принтер для начинающего энтузиаста дома или предпринимателя? Много.

Как использовать 3D-принтер у себя дома

Хотя эти принтеры могут быть еще не в каждом доме, они все же предлагают возможность распечатать большое количество обычных предметов, которые вы обычно покупаете или собираете самостоятельно. Когда вы можете настроить дизайн своих чертежей и распечатать эти предметы дома, 3D-принтеры предлагают несколько преимуществ:

  • Воплощайте художественные проекты в жизнь
  • Создавайте уникальные подарки для семьи и друзей
  • Сокращайте домашние расходы на предметы повседневного обихода
  • Печать запасные части для ремонта мебели и техники
  • Изготовление прототипов предметов для вашего бизнеса или хобби

Резюме

3D-печать требует предварительных вложений в принтер и сырье, что может сделать ее недоступной для многих начинающих производителей.Но благодаря стратегическому планированию и внедрению 3D-печать может предоставить множество новых возможностей для творчества и полезности в вашем доме и на работе.

В HP® есть специальные решения для бизнес-печати, такие как HP Jet Fusion 500/300 Series, которые отражают этот образ мышления, позволяя повысить скорость проектирования и производственных циклов, повысить рентабельность и экологичность. .

Смотрите также